Калькулятор вычисления объема и площади геометрических фигур

Фигура
Рассчитываем
Калькулятор вычисления объема и площади геометрических фигур Калькулятор вычисления объема и площади геометрических фигур
Введите 1 величину
Введите 1 величину
Введите 3 величины
Введите 2 величины (радиус и диаметр основания приняты за одну величину)
Введите H и 1 величину
Введите 3 величины
Введите 2 величины
Между стороной и плоскостью основания
Результат расчёта
  • Объём: {$ result.v|number:4 $}
  • Площать: {$ result.s|number:4 $}
  • Площать: {$ result.s $}

Весь осязаемый мир представляет собой объемные геометрические фигуры и их сочетания. Определение объемов и площадей поверхностей тел может понадобиться не только при решении школьных задач, но также в быту или профессиональной деятельности. Простые объемные тела разделяются на две категории.

Тела вращения

Первая категория — это тела вращения. Такие объемные фигуры образуются путем вращения плоской фигуры вокруг одной из сторон или путем движения образующей кривой вдоль направляющей. Наш каталог предлагает калькуляторы, при помощи которых можно рассчитать параметры следующих тел вращения.

Конус

Конус — фигура, которая создается путем вращения прямоугольного треугольника вокруг одного из катетов. Также конус формируется путем движения образующего луча вдоль направляющей окружности, при этом начало луча остается неподвижным. Для определения площади поверхности конуса используется простая формула:

S = pi × R × (R + l),

где R — радиус основания, l — образующая конуса.

Для подсчета объема конической фигуры используется следующее соотношение:

V = (pi × R2 × h)/3,

где h — высота конуса.

Конусы широко встречаются в быту, производстве или науке. Например, коническую форму имеют вафельные рожки для мороженного, абажуры для светильников, пожарные ведра или воронки. В природе конус также распространен: горы, вулканы, сосновые шишки или шляпки грибов имеют форму данного тела.

Цилиндр

Цилиндр — тело вращения, которое образуется путем вращения прямоугольника вокруг одной из сторон. Также цилиндр формируется путем движения образующей прямой по направляющей кривой, которая в случае цилиндра может быть окружностью, эллипсом, параболой или гиперболой. Такие «экзотические» цилиндры носят соответствующие названия эллиптических, параболических и гиперболических фигур, однако в реальной жизни наибольшее распространение получил прямой круговой цилиндр. Для определения площади поверхности такого цилиндра используется формула:

S = 2 pi × R × (R + h),

где R — радиус основания, h — высота цилиндра.

Для вычисления объема цилиндра геометры применяют следующее соотношение:

V = pi × R2 × h.

Цилиндр легко встретить в реальной жизни: это и цистерны, и поршни двигателей, и колонны, и трубы газопроводов. Цилиндры широко используются в производстве, поэтому многим инженерам приходится вычислять площади поверхностей или объемы цилиндрических объектов.

Шар

Шар — тело вращения, созданное путем вращения круга около своей оси. Сфера — это поверхность, сформированная путем вращения окружности или полуокружности вокруг своей оси. Таким образом, шар — это пространство, ограниченное сферой. Площадь сферы вычисляется по формуле:

S = 4 pi × R2,

где R — радиус сферы.

Для подсчета объема шара используется следующее выражение:

V = 4/3 pi × R3.

Шар — идеальная фигура, поэтому в природе она встречается довольно часто. К примеру, сферическую форму принимают капли дождя, снежные комья, планеты, звезды, а также ягоды или кроны деревьев. В человеческой повседневности форму шара имеют спортивные мячи, пушечные ядра, подшипники или бусины.

Многогранники

Вторя категория — многогранники. Многогранник или полиэдр — это объемное тело, каждая грань которого является многоугольником. Существует огромное множество многогранников: к ним относятся призмы, пирамиды, параллелепипеды, а также платоновы тела — полиэдры, гранями которых являются правильные многоугольники. В нашем каталоге вы найдете инструменты для определения площадей поверхностей и объемов следующих многогранников.

Призма

Призма — это полиэдр, который состоит из двух n-угольных оснований, параллельных друг другу и n боковых граней, формирующих боковую поверхность призмы. Грань призмы — это всегда параллелограмм. Простыми словами, если в основании фигуры лежит квадрат, то призма считается четырехугольной, но при этом шестигранной: четыре грани составляют боковую поверхность, а две — поверхность оснований. Если в основании лежит пентагон — то призма пятиугольная и семигранная, а если додекагон — то фигура 12-угольная и 14-гранная. Если в основании призмы положить полигон, количество сторон которого стремится к бесконечности, то основание превратится в круг, а призма — в цилиндр. Для определения площади боковой поверхности призматической фигуры используется выражение:

Sb = n × a × h,

где a — сторона параллелограмма, n — количество граней, h — его высота.

Площадь поверхности основания призмы зависит от многоугольника и в общем виде для правильных полигонов рассчитывается как:

So = n/4 × a2 × ctg(pi/n),

где n — количество сторон фигуры, a — длина стороны.

Полная же площадь поверхности определяется как:

S = 2 So + Sb.

Объем призмы вычисляется по следующей формуле:

V = So х h.

Призма — наиболее распространенный в человеческой повседневности полиэдр. Форму призмы имеет огромное число предметов вокруг вас: это системный блок компьютера, сабвуфер, стол, шкаф, комната и здание. Если выйти на улицу, то вы увидите царство призм. Именно поэтому инструмент для определения объемов и площадей поверхности призматических фигур всегда актуален.

Пирамида

Пирамида — это полиэдр, который составлен из n-угольного основания и n боковых граней, формирующих боковую поверхность пирамидальной фигуры. Грань пирамиды — это всегда треугольник. Вид полиэдра определяется в зависимости от того, какой полигон выступает в роли фундамента пирамиды. Следовательно, пирамиды бывают треугольные, четырехугольные, пятиугольные или n-угольные. Площадь боковой порвехности пирамиды рассчитывается согласно выражению:

Sb = 0,5 P х h,

где h — высота пирамиды, P — периметр полигона, лежащего в основании.

Площадь фундамента рассчитывается по общей формуле для любого правильного полигона:

So = n/4 × a2 × ctg(pi/n),

где a — длина стороны, n — количество сторон.

Полная площадь поверхности пирамиды определяется как:

S = So + Sb.

Для определения объема пирамиды используется формула:

V = (So х h)/3,

где h — высота фигуры.

Пирамида — довольно распространенная фигура и широко используется в архитектуре. Всем известно о величественных пирамидах в Египте или колоссальных сооружениях в Южной Америке. Современные архитекторы также активно используют пирамиды при проектировании торговых комплексов, музеев или выставочных галерей. Кроме того, пирамидальные фигуры часто встречаются в производстве и машиностроении.

Параллелепипед

Параллелепипед — это гексаэдр с попарно параллельными гранями. Если ребра такого шестигранника равны, то параллелепипед превращается в куб. Параллелепипед — это частный случай прямой четырехугольной призмы, поэтому формулы для расчета площади и объема фигуры выводятся из соотношений для призмы с n = 4. Таким образом, для расчета площади поверхности гексаэдра используется формула:

S = 4 (a × h) + 2 (a × b),

где a, b — стороны основания параллелепипеда, h — высота фигуры.

Объем полиэдра определяется как:

V = a × b × h.

Параллелепипед, так же как и призма, постоянно встречается в реальности. Форму такого гексаэдра имеет множество вещей вокруг нас: шлакоблоки, бетонные плиты, грузовые контейнеры или картонные коробки. Формулы для расчета атрибутов параллелепипеда, несомненно, пригодятся вам не только для решения школьных задач, но и в бытовых вопросах.

Примеры использования

Наш калькулятор позволяет рассчитать объем или площадь поверхности любого из заданных геометрических тел. Рассмотрим пару примеров.

Заливка бетона

К примеру, вы решили построить летний коттедж, а для каждого дома необходим фундамент. Вы выбрали плитный фундамент — монолитную плиту, которую заливают под всей площадью будущего жилища. Вам требуется узнать, сколько бетона понадобится для обустройства такого фундамента. Плитное основание представляет собой обычный параллелепипед, следовательно, вам понадобится определить объем шестигранника. Пусть вы хотите построить дом с размерами 6 на 9 метров, а толщина фундамента согласно техническим требованиям должна составлять 15 см. Приведем все параметры в одни единицы измерения и воспользуемся калькулятором для расчета объема параллелепипеда.

V = 8,1

Таким образом, нам потребуется заказать 8,1 кубометров бетонной смеси.

Пошив мячей

Допустим, вы открыли производство по производству волейбольных мячей, и вам требуется узнать, сколько материала уходит на пошив одного мяча. Согласно данным из Википедии, стандартный волейбольный мяч имеет длину окружности l = 67 см, следовательно, радиус такого мячика составит 10,6 см. Зная радиус, вы без проблем можете определить, сколько синтетической кожи понадобится для создания одного изделия

S = 0,141

Это означает, что для обшивки одного мяча вам понадобится 0,141 квадратных метров кожи.

Заключение

Объемные фигуры постоянно вращаются вокруг нас, поэтому задача определения площадей поверхностей и объемов многогранников остается актуальной задачей. Используйте наш каталог онлайн-калькуляторов и выполняйте необходимые расчеты для решения бытовых или производственных задач.